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Abstractr 
The lack of a versatile software tool for parallel program 

development has been one of the major obstacles for 
exploiting the potential of high-performance architectures. In 
this paper, we describe an experimental software tool called 
CASCH (Computer Aided SCHeduling) for parallelizing and 
scheduling applications to parallel processors. CASCH 
transforms a sequential program to a parallel program with 
automatic scheduling, mapping, communication, and 
synchronization. The major strength of CASCH is its 
extensive library of scheduling and mapping algorithms 
representing a broad range of state-of-the-art work reported in 
the recent literature. These algorithms are applied for 
allocating a parallelized program to the processors, and thus 
the algorithms can be interactively analyzed, tested and 
compared using real data on a common platform with various 
performance objectives. CASCH is useful for both novice and 
expert programmers of parallel machines, and can serve as a 
teaching and learning aid for understanding scheduling and 
mapping algorithms. 
1 Introduction 

Parallel machines provide tremendous potential for high 
performance but their programming can be a tedious task. The 
software development process for parallel processing 
includes designing a parallel algorithm, partitioning the data 
and control, communication, synchronization, scheduling, 
mapping, and identifying and interpreting various 
performance measures. While an efficient implementation of 
some of these tasks can only be done manually, a number of 
tedious chores, such as scheduling, mapping, and 
communication can be automated. 

Several research efforts have demonstrated the usefulness 
of program development tools for parallel processing. 
Essentially, these tools can be classified into two types. The 
first type of tools are mostly commercial tools which provide 
software development and debugging environments [5], [6], 
[IO]. Some of these tools also provide performance tuning and 
other program development facilities [3], [ I  11, [19]. A major 
drawback of some of these tools is that they are essentially 
simulation environments. While they can help in 
understanding the operation and behavior of scheduling and 
mapping algorithms, they are inadequate for practical 
purposes. The second type of tools performs some program 
transformation through program restructuring [7], [9], [13], 
[17], [22], [23], [24]. However, these tools are usually not 
well integrated with sophisticated scheduling algorithms. 

In this paper, we describe a software tool called CASCH 

?. This research was p d y  supported by a grant from the Hong 
Kong Research Grants Council under contract number HKUST 
734/96E and HKUST RI 93/94.EG06. 

(Computer Aided SCHeduling) for parallel processing on 
distributed-memory multiprocessors. CASCH can be 
considered to be a super set of tools such as PAWS [19], 
Hypertool [23] ,  PYRROS [24], and Parallax [17], since it 
includes the major functionalities of these tools at a more 
advanced and comprehensive level and also offers additional 
useful features. CASCH is aimed to be a complete parallel 
programming environment including parallelization, 
partitioning, scheduling, mapping, communication, 
synchronization, code generation, and performance 
evaluation. Parallelization is performed by a compiler that 
automatically converts sequential applications into parallel 
codes. The parallel code is optimized through proper 
scheduling and mapping, and is executed on a target machine. 
CASCH provides an extensive library of state-of-the-art 
scheduling algorithms from the recent literature. The library 
of scheduling algorithms is organized into different categories 
which are suitable for different architectural environments. 

The scheduling and mapping algorithms are used for 
scheduling the task graph generated from the user program. 
The weights on the nodes and edges of the task graph are 
computed using a database that contains the timing of various 
computation, communication, and U 0  operations for different 
machines. These timings are obtained through benchmarking. 
An attractive feature of CASCH is its easy-to-use GUI for 
analyzing various scheduling and mapping algorithms using 
task graphs generated randomly, interactively, or directly 
from real programs. The best schedule generated by an 
algorithm can be used by the code generator for generating a 
parallel program for a particular machine-the same process 
can be repeated for another machine. 

The rest of this paper is organized as follows. Section 2 
gives an overview of CASCH and describes it major 
functionalities. Section 3 includes the results of the 
experiments conducted on the Intel Paragon using CASCH. 
The last section includes a discussion of the future work and 
some concluding remarks. 
2 Overview of CASCH 

The overall organization of CASCH is shown in Figure 1. 
The main components of CASCH includes: 

A compiler  which includes a lexer and a parser; 
A DAG (directed acyclic graph) generator; 
A weight estimator; 
A scheduling/mapping tool; 
A communication inserter; 
An interactive display unit; 
A code generator; 
A performance evaluation module. 

These components are described below. 
User Programs: Using the CASCH tool, the user first 

writes a sequential program from which a DAG is generated. 
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TO facilitate the automation of program development, we use 
a programming style in which a program is composed of a set 
of procedures called from the main program. A procedure is 
an indivisible unit of computation to be scheduled on one 
processor. The grain sizes of procedures are determined by 
the programmer, and can be modified with CASCH. 

The control dependencies can be ignored, so that a 
procedure call can be executed whenever all input data of the 
procedure are available. Data dependencies are defined by the 
single assignment of parameters in procedure calls. 
Communications are invoked only at the beginning and the 
end of procedures. In other words, a procedure receives 
messages before it begins execution, and it sends messages 
after it has finished the computation. 

Lexer and Parser: The lexer and parser analyze the data 
dependencies and user defined partitions. For a static 
program, the number of procedures are known before 
program execution. Such a program can be executed 
sequentially or in parallel. It is system independent since 
communication primitives are not specified in the program. 
Data dependencies among the procedural parameters define a 
macro dataflow graph. 

Weight Estimator: The weights on the nodes and edges 
of the DAG are inserted with the help of an estimator that 
provides timings of various instructions as well as the cost of 
communication on a given machine. The estimator uses actual 
timings of various computation, communication, and 110 
operations on various machines. These timings are obtained 
through benchmarking using an approach similar to [19]. 
Communication estimation, which is obtained 
experimentally, is based on the cost for each communication 
primitive, such as send, receive, and broadcast. 

DAG Generation: A macro dataflow graph, which is 
generated directly from the main program, is a directed graph 
with a start and an end point. Each node corresponds to a 
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procedure, and the node weight is represented by the 
procedure execution time. Each edge corresponds to a 
message transferred from one procedure to another 
procedure, and the weight of the edge is equal to the 
transmission time of the message. When two nodes are 
scheduled to a single processor, the weight of the edge 
connecting them becomes zero. The execution time of a node 
is obtained by using the estimator. The transmission time of a 
message is estimated by using the message start-up time, 
message length, and communication channel bandwidth. 

SchedulingMapping Tool: A common approach to 
distributing workload to processors is to partition a problem 
into P tasks and perform a one-to-one mapping between the 
tasks and the processors. Partitioning can be done with the 
“block”, “cyclic”, or “block-cyclic” pattern [lo]. Such 
partitioning schemes are suitable for problems with regular 
structures. Simple scheduling heuristics such as the “owner 
compute” rule work for certain problems but could fail for 
many others, especially for irregular problems, as it is 
difficult to balance load and minimize dependencies 
simultaneously. The way to solve irregular problems is to 
partition the problem into many tasks which are scheduled for 
a balanced load and minimized communication. In CASCH, 
a DAG generated based on this partitioning is scheduled using 
a scheduling algorithm. However, one scheduling algorithm 
may not be suitable for a certain problem on a given 
architecture. 

CASCH includes various algorithms (see Figure 1) which 
are suitable to various environments. Currently, CASCH 
includes three classes of algorithms [2]: the UNC (unbounded 
number of clusters), the BNP (bounded number of 
processors), and the APN (arbitrary processor network) 
scheduling algorithms. The UNC scheduling algorithms, 
which are mostly based on clustering techniques, are designed 
for scheduling with unlimited number of processors. The 
BNP scheduling algorithms, which are based on the list 
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scheduling technique [ 11, are suitable for scheduling when 
only a limited number of processors are available. The APN 
scheduling algorithms, which take into consideration link 
contention and the topology of target processor network, are 
useful for scheduling a distributed system. 

Communication Insertion and Code Generation: 
Synchronization among the tasks running on multiple 
processors is carried out by communication primitives. The 
basic communication primitives for exchanging messages 
between processors are send and receive. They must be used 
properly to ensure a correct sequence of computation. These 
primitives are inserted automatically, reducing a 
programmer's burden and eliminating insertion errors. The 
procedure for inserting communication primitive is as 
follows. After scheduling and mapping, each node in a macro 
dataflow graph is allocated to a processor. If an edge leaves 
from a node to another node which belongs to a different 
processor, the send primitive is inserted after the node. 
Similarly, if an edge comes from another node in a different 
processor, the receive primitive is inserted before the node. 
However, if a message has already been sent to a particular 
processor, the same message does not need to be sent to the 
same processor again. If a message is to be sent to many 
processors, broadcasting or multicasting can be applied 
instead of separate message. After the communication 
primitives are properly inserted, parallel code is generated by 
including appropriate library procedures from a standard 
package such as the NX of the Intel Paragon. 
3 Performance Results 

CASCH runs on a SUN workstation that is linked through 
a network to an Intel Paragon. We have parallelized several 
applications on CASCH by using the scheduling algorithms 
described above (see Figure 1). In this paper we discuss the 
performance of two applications: Gaussian elimination and 
Laplace equation solver. The objective of including these 
results is to demonstrate the viability and usefulness of 
CASCH as well as to make a comparison among various 
scheduling algorithms. For reference, we have also included 
the results obtained with manually generated code. A manual 
code is generated by first partitioning the data among 
processors in a fashion that reduces the dependencies among 
these partitions. Based on this partitioning, an SPMD-based 
code is generated for each processors. 

The performance measures include the program execution 
time (the maximum finish time out of all processors) 
measured on the Intel Paragon, the number of processors used 
by the schedule (and hence by the application program) 
generated by the scheduling algorithm, and the running time 
of the scheduling algorithm. 

The first set of results (see Figure 2) are for the Gaussian 
elimination application with four different sizes of input 
matrix dimensions: 4, 8, 16, and 32. Figure 2(a) shows the 
execution times for various data sizes using different 
algorithms. We observe that the execution times vary 
considerably with different algorithms. Among the UNC 
algorithm, the DCP algorithm yields the best performance due 
to its superior scheduling method. Among the BNP 
algorithms, MCP and DLS are in general better,. primarily 
because of their better task priority assignment methods. 
Among the APN algorithms, BSA and MH perform better, 

Algorithm 

Manual 

4 8 16 32 

0.14 0.42 2.42 4.52 

DCP 0.10 0.11 0.28 1.21 DCP 3 7 10 22 
DSC 0.11 0.14 N.A. N.A. DSC 5 22 95 128 

1 2 15 33 
LC 0.10 0.13 0.32 1.42 LC MD 2 3 4 7  8 16 32 64 

0.12 0.15 0.32 1.38 

MD EZ I 0.11 0.13 0.30 1.29 EZ I 
ETF 
HLFET 
ISH 
LAST 
MCP 
DLS 

-I---..- ........,...,,, ~ ,..,... ..........I I........,,......... .. I,,,........" .... ..... ..l..ll..l..l.l. "" ,I..." 
0.11 0.13 0.31 1.34 
0.11 0.14 0.35 2.47 
0.11 0.14 0.34 1.29 
0.12 0.16 0.33 1.50 
0.11 0.16 0.30 1.28 
0.11 0.14 0.29 1.30 

ETF 
HLFET 
ISH 
LAST 
MCP 
DLS 

3 7 16 32 
3 7 16 32 
2 9 21 56 
1 5 13 29 
3 7 16 32 
3 7 16 32 

DLS 
MH 17 

(a) ExecutionTimes (sec.) on the Paragon. (b) Nimber of processors used 

Matrix Dimension 
(No. of Tasks) 

6.19 6.50 Uq9.81 330.15 
0.05 0.06 0.08 0.27 

.".._."l 
0.07 
0.07 
0.07 
0.08 
0.07 
0.08 

_"_.._I 
0.21 
0.15 
0.08 
0.24 
0.09 
0.28 

11____1  ̂.~ 
2.26 
0.69 
0.32 
2.23 
0.40 
2.84 

(c) Scheduling times (sec.) on a SPARC Station 2. 

Figure 2: Execution times, number of processors used and 
scheduling times for the Gaussian elimination application. 

due to their proper allocations of tasks and messages. All 
algorithms perform better than manually generated code: 
Compared to the manual scheduling, the level of performance 
improvement is up to 400%. The number of processors used 
by these algorithms is shown in Figure 2(b). The BU 
algorithm has a tendency of using a large number of 
processors. The times taken by various scheduling algorithms 
for generating the schedules for the Gaussian elimination 
example are included in Figure 2(c). We notice that these 
scheduling times vary drastically. The MD and DLS 
algorithms take considerably longer time to generate 
solutions while DSC and MCP are much faster. 

Our second application is a Gauss-Seidel based algorithm 
to solve Laplace equations. The 4 matrix sizes used are 4, 8, 
16, and 32. The application execution times using various 
algorithms and data size are shown in Figure 3(a). Again, 
using the best algorithms, such as DCP, more than 400% 
improvement over manually generated code is obtained. The 
UNC algorithms in general yield better schedules (mainly 
because they tend to use large numbers of processors). The 
numbers of processors used by these algorithms are shown in 
Figure 3(b). Again, the number of processors used by the 
DSC algorithm is quite large as compared to the other 
algorithms. The running times of the scheduling algorithms 
are shown in Figure 3(c) which are consistent with our earlier 
observations. 

A number of conclusions can be made from the above 
results. First, in general UNC algorithms generate shorter 
schedules but uses more processors than BNP and APN 
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Matrix Dimension Matrix Dimension 

Algorithm14 8 16 32 

designing a partitioning module for automatic or 
interactive partitioning of programs. 
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algorithms. Thus, UNC algorithms are more suitable for 
MPPs. Second, BNP algorithms require less time for 
scheduling than UNC and APN algorithms and therefore are 
more suitable for scheduling under time constraint. Finally, 
APN algorithms tend to use less processors, due to its 
consideration of link contention, but generate slightly longer 
schedules for the Intel Paragon which has a fast network. 
Thus, APN algorithms are more suitable for. distributed 
systems such as a network of workstations (NOW). 
4 Conclusions and Future Work 

The main objectives of CASCH are automatic 
parallelization and scheduling of applications to parallel 
processors. CASCH achieves these objectives by providing a 
unified environment for various existing and conceptual 
machines. Users can optimize their code by choosing the best 
algorithm. We are currently working on extending the 
capabilities of CASCH by including the following: 

including support for distributed computing systems such 
as a collection of diverse machines working as a 
distributed heterogeneous supercomputer system; 
extending the current database of benchmark timings by 
including more detailed and lower level timings of 
various computation, communication and I/O operations 
of various existing machines; 
including debugging facilities for error detection and 
global variable checking, etc.; 
expressing various kinds of parallelism, use a functional 
or logic programming language or object oriented 
language such as C++; 
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