
Automatic Parallelization and Scheduling of Programs on
Multiprocessors using CASCH

Ishfaq Ahmad', Yu-Kwong Kwok', Min-You Wu2 and Wei Shu2
'Department of Computer Science, The Hong Kong University of Science and Technology, Hong Kong

2Department of Computer Science, State University of New York at Buffalo, New York
Email: (iahmad, csricky] @cs.ust.hk, (wu, shu} @cs.buffalo.edu

Abstractr
The lack of a versatile software tool for parallel program

development has been one of the major obstacles for
exploiting the potential of high-performance architectures. In
this paper, we describe an experimental software tool called
CASCH (Computer Aided SCHeduling) for parallelizing and
scheduling applications to parallel processors. CASCH
transforms a sequential program to a parallel program with
automatic scheduling, mapping, communication, and
synchronization. The major strength of CASCH is its
extensive library of scheduling and mapping algorithms
representing a broad range of state-of-the-art work reported in
the recent literature. These algorithms are applied for
allocating a parallelized program to the processors, and thus
the algorithms can be interactively analyzed, tested and
compared using real data on a common platform with various
performance objectives. CASCH is useful for both novice and
expert programmers of parallel machines, and can serve as a
teaching and learning aid for understanding scheduling and
mapping algorithms.
1 Introduction

Parallel machines provide tremendous potential for high
performance but their programming can be a tedious task. The
software development process for parallel processing
includes designing a parallel algorithm, partitioning the data
and control, communication, synchronization, scheduling,
mapping, and identifying and interpreting various
performance measures. While an efficient implementation of
some of these tasks can only be done manually, a number of
tedious chores, such as scheduling, mapping, and
communication can be automated.

Several research efforts have demonstrated the usefulness
of program development tools for parallel processing.
Essentially, these tools can be classified into two types. The
first type of tools are mostly commercial tools which provide
software development and debugging environments [5], [6],
[IO]. Some of these tools also provide performance tuning and
other program development facilities [3], [I 11, [19]. A major
drawback of some of these tools is that they are essentially
simulation environments. While they can help in
understanding the operation and behavior of scheduling and
mapping algorithms, they are inadequate for practical
purposes. The second type of tools performs some program
transformation through program restructuring [7], [9], [13],
[17], [22], [23], [24]. However, these tools are usually not
well integrated with sophisticated scheduling algorithms.

In this paper, we describe a software tool called CASCH

?. This research was p d y supported by a grant from the Hong
Kong Research Grants Council under contract number HKUST
734/96E and HKUST RI 93/94.EG06.

(Computer Aided SCHeduling) for parallel processing on
distributed-memory multiprocessors. CASCH can be
considered to be a super set of tools such as PAWS [19],
Hypertool [23] , PYRROS [24], and Parallax [17], since it
includes the major functionalities of these tools at a more
advanced and comprehensive level and also offers additional
useful features. CASCH is aimed to be a complete parallel
programming environment including parallelization,
partitioning, scheduling, mapping, communication,
synchronization, code generation, and performance
evaluation. Parallelization is performed by a compiler that
automatically converts sequential applications into parallel
codes. The parallel code is optimized through proper
scheduling and mapping, and is executed on a target machine.
CASCH provides an extensive library of state-of-the-art
scheduling algorithms from the recent literature. The library
of scheduling algorithms is organized into different categories
which are suitable for different architectural environments.

The scheduling and mapping algorithms are used for
scheduling the task graph generated from the user program.
The weights on the nodes and edges of the task graph are
computed using a database that contains the timing of various
computation, communication, and U 0 operations for different
machines. These timings are obtained through benchmarking.
An attractive feature of CASCH is its easy-to-use GUI for
analyzing various scheduling and mapping algorithms using
task graphs generated randomly, interactively, or directly
from real programs. The best schedule generated by an
algorithm can be used by the code generator for generating a
parallel program for a particular machine-the same process
can be repeated for another machine.

The rest of this paper is organized as follows. Section 2
gives an overview of CASCH and describes it major
functionalities. Section 3 includes the results of the
experiments conducted on the Intel Paragon using CASCH.
The last section includes a discussion of the future work and
some concluding remarks.
2 Overview of CASCH

The overall organization of CASCH is shown in Figure 1.
The main components of CASCH includes:

A compiler which includes a lexer and a parser;
A DAG (directed acyclic graph) generator;
A weight estimator;
A scheduling/mapping tool;
A communication inserter;
An interactive display unit;
A code generator;
A performance evaluation module.

These components are described below.
User Programs: Using the CASCH tool, the user first

writes a sequential program from which a DAG is generated.

0190-3918/97 $10.00 0 1997 IEEE
288

mailto:cs.buffalo.edu

TO facilitate the automation of program development, we use
a programming style in which a program is composed of a set
of procedures called from the main program. A procedure is
an indivisible unit of computation to be scheduled on one
processor. The grain sizes of procedures are determined by
the programmer, and can be modified with CASCH.

The control dependencies can be ignored, so that a
procedure call can be executed whenever all input data of the
procedure are available. Data dependencies are defined by the
single assignment of parameters in procedure calls.
Communications are invoked only at the beginning and the
end of procedures. In other words, a procedure receives
messages before it begins execution, and it sends messages
after it has finished the computation.

Lexer and Parser: The lexer and parser analyze the data
dependencies and user defined partitions. For a static
program, the number of procedures are known before
program execution. Such a program can be executed
sequentially or in parallel. It is system independent since
communication primitives are not specified in the program.
Data dependencies among the procedural parameters define a
macro dataflow graph.

Weight Estimator: The weights on the nodes and edges
of the DAG are inserted with the help of an estimator that
provides timings of various instructions as well as the cost of
communication on a given machine. The estimator uses actual
timings of various computation, communication, and 110
operations on various machines. These timings are obtained
through benchmarking using an approach similar to [19].
Communication estimation, which is obtained
experimentally, is based on the cost for each communication
primitive, such as send, receive, and broadcast.

DAG Generation: A macro dataflow graph, which is
generated directly from the main program, is a directed graph
with a start and an end point. Each node corresponds to a

Sequential User Pmgram

uterrctive User Interfare ,

procedure, and the node weight is represented by the
procedure execution time. Each edge corresponds to a
message transferred from one procedure to another
procedure, and the weight of the edge is equal to the
transmission time of the message. When two nodes are
scheduled to a single processor, the weight of the edge
connecting them becomes zero. The execution time of a node
is obtained by using the estimator. The transmission time of a
message is estimated by using the message start-up time,
message length, and communication channel bandwidth.

SchedulingMapping Tool: A common approach to
distributing workload to processors is to partition a problem
into P tasks and perform a one-to-one mapping between the
tasks and the processors. Partitioning can be done with the
“block”, “cyclic”, or “block-cyclic” pattern [lo]. Such
partitioning schemes are suitable for problems with regular
structures. Simple scheduling heuristics such as the “owner
compute” rule work for certain problems but could fail for
many others, especially for irregular problems, as it is
difficult to balance load and minimize dependencies
simultaneously. The way to solve irregular problems is to
partition the problem into many tasks which are scheduled for
a balanced load and minimized communication. In CASCH,
a DAG generated based on this partitioning is scheduled using
a scheduling algorithm. However, one scheduling algorithm
may not be suitable for a certain problem on a given
architecture.

CASCH includes various algorithms (see Figure 1) which
are suitable to various environments. Currently, CASCH
includes three classes of algorithms [2]: the UNC (unbounded
number of clusters), the BNP (bounded number of
processors), and the APN (arbitrary processor network)
scheduling algorithms. The UNC scheduling algorithms,
which are mostly based on clustering techniques, are designed
for scheduling with unlimited number of processors. The
BNP scheduling algorithms, which are based on the list

Weight Estimator

Clusters of
Workstations

I 4

Performance Evaluation Module I

I I Application _-
I I S t l h S h C S

Figure 1 The system organization of CASCH

Intel Paragon !a

ScheduiinglMapping Module

289

scheduling technique [11, are suitable for scheduling when
only a limited number of processors are available. The APN
scheduling algorithms, which take into consideration link
contention and the topology of target processor network, are
useful for scheduling a distributed system.

Communication Insertion and Code Generation:
Synchronization among the tasks running on multiple
processors is carried out by communication primitives. The
basic communication primitives for exchanging messages
between processors are send and receive. They must be used
properly to ensure a correct sequence of computation. These
primitives are inserted automatically, reducing a
programmer's burden and eliminating insertion errors. The
procedure for inserting communication primitive is as
follows. After scheduling and mapping, each node in a macro
dataflow graph is allocated to a processor. If an edge leaves
from a node to another node which belongs to a different
processor, the send primitive is inserted after the node.
Similarly, if an edge comes from another node in a different
processor, the receive primitive is inserted before the node.
However, if a message has already been sent to a particular
processor, the same message does not need to be sent to the
same processor again. If a message is to be sent to many
processors, broadcasting or multicasting can be applied
instead of separate message. After the communication
primitives are properly inserted, parallel code is generated by
including appropriate library procedures from a standard
package such as the NX of the Intel Paragon.
3 Performance Results

CASCH runs on a SUN workstation that is linked through
a network to an Intel Paragon. We have parallelized several
applications on CASCH by using the scheduling algorithms
described above (see Figure 1). In this paper we discuss the
performance of two applications: Gaussian elimination and
Laplace equation solver. The objective of including these
results is to demonstrate the viability and usefulness of
CASCH as well as to make a comparison among various
scheduling algorithms. For reference, we have also included
the results obtained with manually generated code. A manual
code is generated by first partitioning the data among
processors in a fashion that reduces the dependencies among
these partitions. Based on this partitioning, an SPMD-based
code is generated for each processors.

The performance measures include the program execution
time (the maximum finish time out of all processors)
measured on the Intel Paragon, the number of processors used
by the schedule (and hence by the application program)
generated by the scheduling algorithm, and the running time
of the scheduling algorithm.

The first set of results (see Figure 2) are for the Gaussian
elimination application with four different sizes of input
matrix dimensions: 4, 8, 16, and 32. Figure 2(a) shows the
execution times for various data sizes using different
algorithms. We observe that the execution times vary
considerably with different algorithms. Among the UNC
algorithm, the DCP algorithm yields the best performance due
to its superior scheduling method. Among the BNP
algorithms, MCP and DLS are in general better,. primarily
because of their better task priority assignment methods.
Among the APN algorithms, BSA and MH perform better,

Algorithm

Manual

4 8 16 32

0.14 0.42 2.42 4.52

DCP 0.10 0.11 0.28 1.21 DCP 3 7 10 22
DSC 0.11 0.14 N.A. N.A. DSC 5 22 95 128

1 2 15 33
LC 0.10 0.13 0.32 1.42 LC MD 2 3 4 7 8 16 32 64

0.12 0.15 0.32 1.38

MD EZ I 0.11 0.13 0.30 1.29 EZ I
ETF
HLFET
ISH
LAST
MCP
DLS

-I---..-,...,,, ~ ,..,...I I........,,......... .. I,,,........"l..ll..l..l.l. "" ,I..."
0.11 0.13 0.31 1.34
0.11 0.14 0.35 2.47
0.11 0.14 0.34 1.29
0.12 0.16 0.33 1.50
0.11 0.16 0.30 1.28
0.11 0.14 0.29 1.30

ETF
HLFET
ISH
LAST
MCP
DLS

3 7 16 32
3 7 16 32
2 9 21 56
1 5 13 29
3 7 16 32
3 7 16 32

DLS
MH 17

(a) ExecutionTimes (sec.) on the Paragon. (b) Nimber of processors used

Matrix Dimension
(No. of Tasks)

6.19 6.50 Uq9.81 330.15
0.05 0.06 0.08 0.27

.".._."l
0.07
0.07
0.07
0.08
0.07
0.08

".._I
0.21
0.15
0.08
0.24
0.09
0.28

11____1 ̂.~
2.26
0.69
0.32
2.23
0.40
2.84

(c) Scheduling times (sec.) on a SPARC Station 2.

Figure 2: Execution times, number of processors used and
scheduling times for the Gaussian elimination application.

due to their proper allocations of tasks and messages. All
algorithms perform better than manually generated code:
Compared to the manual scheduling, the level of performance
improvement is up to 400%. The number of processors used
by these algorithms is shown in Figure 2(b). The BU
algorithm has a tendency of using a large number of
processors. The times taken by various scheduling algorithms
for generating the schedules for the Gaussian elimination
example are included in Figure 2(c). We notice that these
scheduling times vary drastically. The MD and DLS
algorithms take considerably longer time to generate
solutions while DSC and MCP are much faster.

Our second application is a Gauss-Seidel based algorithm
to solve Laplace equations. The 4 matrix sizes used are 4, 8,
16, and 32. The application execution times using various
algorithms and data size are shown in Figure 3(a). Again,
using the best algorithms, such as DCP, more than 400%
improvement over manually generated code is obtained. The
UNC algorithms in general yield better schedules (mainly
because they tend to use large numbers of processors). The
numbers of processors used by these algorithms are shown in
Figure 3(b). Again, the number of processors used by the
DSC algorithm is quite large as compared to the other
algorithms. The running times of the scheduling algorithms
are shown in Figure 3(c) which are consistent with our earlier
observations.

A number of conclusions can be made from the above
results. First, in general UNC algorithms generate shorter
schedules but uses more processors than BNP and APN

290

Matrix Dimension Matrix Dimension

Algorithm14 8 16 32

designing a partitioning module for automatic or
interactive partitioning of programs.

References
[I] T.L. Adam, K.M. Chandy, and J. Dickson, “A Comparison of

List Scheduling for Parallel Processing Systems,” Comm. qf the
ACM, vol. 17, pp. 685-690, Dec. 1974.

[2] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, Evaluation
and Comparison of Algorithms for Scheduling Task Graphs to
Parallel Processors,” Proc. of the I996 Int’l Symposium on
Parallel Architecture, Algorithms and Networks, Beijing,
China, Jun. 1996, pp. 207-213.

[3] B. Appelbe and K. Smith, “A Parallel-Programming Toolkit,”
IEEE Sqffware, pp. 29-38, Jul. 1989.

[4] J. Baxter and J.H. Patel, “The LAST Algorithm: A Heuristic-
Based Static Task Allocation Algorithm,” Proc. ICPP, vol. 11,

[5] Cray Research Inc., UNICOS Performance Utilities Reference
Manual, sr2040 6.0 edition, 1991.

[6] Digital Equipment Corp., PARASPHERE User Guide.
[7] J.J. Dongarra and D.C. Sorensen, Schedule Users Guide, Tech.

Rep. Version 1.1, Argonne National Lab., Jun. 1987.
[8] H. El-Rewini and T.G. Lewis, “Scheduling Parallel Programs

onto Arbitrary Target Machines,” J. of Parallel and Dist.
Computing, vol. 9, no. 2, pp. 138-153, Jun. 1990.

[9] B.C. Gorda and E.D. Brooks III., “Gang Scheduling a Parallel
machine,” Technical Report UClU--JC--107020, Lawrence
Livermore National Laboratory.

[IO] High Performance Fortran Forum, High performance ,fortrun
language specification, Technical Report Version 1 .O, Rice
University, May 1993.

[1 I] M.T. Heath and J.A. Etheridge, “Visualizing the Performance
of Parallel Programs,” IEEE Sqftware, 8(5):29-39, 1991.

[12] J.J.Hwang, Y.C. Chow, F.D. Anger and C.Y. Lee, “Scheduling
Precedence Graphs in Systems with Interprocessor
Communication Times.” SIAM Journal of Comnutina. vol. 18.

pp. 217-222, Aug. 1989.

DCP 0.72 1.06 6.08 16.02
DSC 0.72 1.34 6.30 16.42

0.72 1.44 6.95 18.28
LC 0.54 1.25 6.95 18.81
MD EZ I 0.72 1.25 6.52 17.08

Manual 1 2 4 8 16

1 1 4 3 6

0.72 1.25 6.73 17.75 ETF 1 4 4 6
HLFET 1 4 4 7

0.72 1.34 7.39 17.08 ISH 1 5 4 14
0.72 1.54 7.17 19.87 LAST 1 3 2 5
0.72 1.54 6.52 16.95 MCP 1 4 4 7
0.72 1.34 6.30 17.22 DLS 1 4 4 6

0.59 3.26 7.60 20.13

(a) Execution limes (sec.) on the Paragon. (b) Number of processors used.

Matrix Dimension
(No. of Tasks)

Algorithm 4 (18) 8 (66) 16 (258)32 (1026)

8.58 7.03 9.60 44.95

(c) Scheduling times (sec.) on a SPARC Station 2.
Figure 3: Execution times, number of processors used and
scheduling times for the Laplace equation solver application.

algorithms. Thus, UNC algorithms are more suitable for
MPPs. Second, BNP algorithms require less time for
scheduling than UNC and APN algorithms and therefore are
more suitable for scheduling under time constraint. Finally,
APN algorithms tend to use less processors, due to its
consideration of link contention, but generate slightly longer
schedules for the Intel Paragon which has a fast network.
Thus, APN algorithms are more suitable for. distributed
systems such as a network of workstations (NOW).
4 Conclusions and Future Work

The main objectives of CASCH are automatic
parallelization and scheduling of applications to parallel
processors. CASCH achieves these objectives by providing a
unified environment for various existing and conceptual
machines. Users can optimize their code by choosing the best
algorithm. We are currently working on extending the
capabilities of CASCH by including the following:

including support for distributed computing systems such
as a collection of diverse machines working as a
distributed heterogeneous supercomputer system;
extending the current database of benchmark timings by
including more detailed and lower level timings of
various computation, communication and I/O operations
of various existing machines;
including debugging facilities for error detection and
global variable checking, etc.;
expressing various kinds of parallelism, use a functional
or logic programming language or object oriented
language such as C++;

I . -
no. 2, pp. 244-257, Apr. 1989.

1131 K. Kennedv, K.S. McKinley. and C. Tseng. “Interactive
~~

Parallel Programming Using .the Parascope kditor,” IEEE
Trans. Parallel and Dist. Systems, 2(3):329--341, 1991.

[141 S.J. Kim and J.C. Browne, “A General Approach to Mapping of
Parallel Computation upon Multiprocessor Architectures,”
Proc. ICPP, vol. 11, pp. 1-8, Aug. 1988.

[I51 Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path
Scheduling: An Effective Technique for Allocating Task
Graphs to Multiprocessors,” IEEE Trans. on Parallel and
Distributed Systems, vol. 7, no. 5, May 1996, pp. 506-521.

[16] -, “Bubble Scheduling: A Quasi Dynamic Algorithm for
Static Allocation of Tasks to Parallel Architectures,”
Proceedings of the 7th IEEE Symposium on Parallel and
Distributed Processing, Oct. 1995, pp. 36-43.

[I71 T.G. Lewis and H. El-Rewini, “Parallax: A Tool for Parallel
Program Scheduling,” IEEE Parallel & Distributed
Technology, vol.1, no. 3, pp. 62-72, May 1993.

[IS] N. Mehdiratta and K. Ghose, “A Bottom-Up Approach to Task
Scheduling on Distributed Memory Multiprocessor,” Proc.

[19] D. Pease, A. Ghafoor, I. Ahmad, K. Foudil-Bey, D. Andrews,
T. Karpinski, M. Mikki and M. Zerrouki, “PAWS: A
performance Assessment Tool for Parallel Computing
Systems,” IEEE Computer, vol. 24, no. 1, pp. 18-29, Jan. 1991.

[20] V. Sarkar, Partitioning and Scheduling Parallel Programs,for
Multiprocessors, MIT Press, Cambridge, MA, 1989.

[21] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor
Architectures,” IEEE Trans. on Parallel and Distributed

ICPP, vol. 11, pp. 151-154, Aug. 1994.

Systems, vol. 4, no. 2, pp. 75-87, Feb. 1993.
1221 M. Wolfe, “The Tinv LOOD Restructuring Research Tool,” Proc.
~~

ICPP, vol. 11, pp. 46-53, Aug. 1991.
[23] M.-Y. Wu and D.D. Gajski, “Hypertool: A Programming Aid

for Message-Passing Systems,” IEEE Trans. Parallel and
Distributed Systems, 1(3):330-343, Jul. 1990.

[24] T. Yang and A. Gerasoulis, “PYRROS: Static Task Scheduling
and Code Generation for Message-Passing Multiprocessors,”
The 6th ACM Int’l Conf on Supercomputing, Jul. 1992.

291

